यदि $\sum_{ r =0}^{25}\left\{{ }^{50} C _{ r } \cdot{ }^{50- r } C _{25- r }\right\}= K \left({ }^{50} C _{25}\right)$ हो, तो $K$ का मान होगा

  • [JEE MAIN 2019]
  • A

    $(25)^2$

  • B

    $2^{25} -1$

  • C

    $2^{24}$

  • D

    $2^{25}$

Similar Questions

माना $C _{ r },(1+ x )^{10}$ के प्रसार में $x ^{ r }$ के द्विपद गुणांक को प्रदर्शित करता है। यदि $\alpha, \beta \in R$ के लिए

$C _1+3.2 C _2+5 \cdot 3 C _3+\ldots 10$ पद तक

$=\frac{\alpha \times 2^{11}}{2^\beta-1}( C _0+\frac{ C _1}{2}+\frac{ C _2}{3}+\ldots . .10$ पद तक है,तो $\alpha+\beta$ का मान होगा

  • [JEE MAIN 2022]

${C_0} - {C_1} + {C_2} - {C_3} + ..... + {( - 1)^n}{C_n}$ बराबर होगा

$\left( {\left( {\begin{array}{*{20}{c}}
{21}\\
1
\end{array}} \right) - \left( {\begin{array}{*{20}{c}}
{10}\\
1
\end{array}} \right)} \right) + \left( {\left( {\begin{array}{*{20}{c}}
{21}\\
2
\end{array}} \right) - \left( {\begin{array}{*{20}{c}}
{10}\\
2
\end{array}} \right)} \right)$$ + \left( {\left( {\begin{array}{*{20}{c}}
{21}\\
3
\end{array}} \right) - \left( {\begin{array}{*{20}{c}}
{10}\\
3
\end{array}} \right)} \right) + \;.\;.\;.$$ + \left( {\left( {\begin{array}{*{20}{c}}
{21}\\
{10}
\end{array}} \right) - \left( {\begin{array}{*{20}{c}}
{10}\\
{10}
\end{array}} \right)} \right)$ का मान है:

  • [JEE MAIN 2017]

$\sum_{r=0}^{6}\left({ }^{6} C _{r} \cdot{ }^{6} C _{6- r }\right)$ का मान बराबर है

  • [JEE MAIN 2021]

यदि ${(1 + x + {x^2})^n}$ के विस्तार में ${x^r}$का गुणांक ${a_r}$ हो, तो ${a_1} - 2{a_2} + 3{a_3} - .... - 2n\,{a_{2n}} = $